درباره قضایای نقطه ثابت و نگاشت های انقباضی

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور مرکز - دانشکده علوم پایه
  • نویسنده سمیه اعتباری
  • استاد راهنما هادی خدابخشیان
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1388
چکیده

در این رساله قضیه ی نقطه ثابت را برای نگاشت های انقباضی و به ویژه انقباض برودر در سال 1968 مورد بررسی قرار می دهیم. نشان می دهیم بسیاری از تعریف نگاشت های انقباضی که در مقالات بعد از 1968 آمده فرمول های معادل یا حتی حالات خاص از تعاریف برودر است. هم چنین به بررسی وجود نقاط ثابت تقریبی بر روی نگاشت های انقباضی پیوسته می پردازیم. در ابتدا انواع نقاط ثابت را تعریف کرده و رابطه ی بین این نقاط را نشان می دهیم. در فصل بعد نگاشت های انقباضی و رابطه ی بین آن ها را بررسی می کنیم. در فصل چهارم به بررسی انواع نقاط ثابت روی نگاشت های انقباضی تعریف شده پرداخته و در پایان این فصل نگاشت های انقباضی را معرفی می کنیم که هم afp و هم cfp دارند. در فصل پایانی هم به عنوان کاربردی از نقاط ثابت به تعریف e – نقاط ثابت و فضای b– متریک پرداخته و نتایج کمی و کیفی بعضی از نگاشت های انقباضی روی فضاهای متریک و b- متریک را بررسی می کنیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

قضایای نقطه ثابت برای انقباض ها و نگاشت های انقباضی نقطه وار مجانبی

این پایان نامه مروری بر برخی نتایج نظریه نقطه ثابت متریک است که همگی آنها تعمیم هایی از اصل اقباض باناخ هستند. بویژه،در این پایان نامه به کارهای اخیر انجام شده توسط کرک در زمینه نقطه ثابت انقباض های نقطه وار، انقباض های نقطه وار مجانبی و نگاشت های مجانباً انقباضی نقطه وار در فضاهای باناخ توجه خاص شده است.

15 صفحه اول

بررسی قضایای نقطه ثابت و انطباقی برای نگاشت های تعمیم یافته -ضعیفاً انقباضی در فضاهایk -متریک

در این رساله ابتدا به بررسی نتایج و قضایای نقطه ثابت وانطباقی برای نگاشت های انقباضی در فضاهای k-متریک می پردازیم. همچنین نتایج تعمیم یافته وتوسعه یافته ای را ارائه می دهیم که اخیراً توسط چودهاری و متیا بدست آمده است. در ادامه قضایایی را مطرح می کنیم که کاربردهای فراوانی در کامپیوتر و ریاضی دارند. در آخر، به اثبات چند قضیه برای نگاشت های –g غیرنزولی در فضای k-متریک با توجه به وجود یا عدم وجود ش...

15 صفحه اول

قضایای نقطه ثابت برای نگاشت های انقباضی تعمیم یافته و کاربردهای آن

فرض کنید x یک مجموعه و y زیر مجموعه x و f تابعی از y به x باشد. هدف نظریه ی نقطه ثابت تعیین شرایطی روی x و یا تابع f است به طوری که وجود یک نقطه ثابت برای f تضمین شود. بررسی وجود نقطه ثابت در بسیاری از مسائل کاربردی مانند قضایای وجودی در معادلات دیفرانسیل، معادلات انتگرال، نظریه کنترل، تابرابریهای مینی ماکس، نابرابری تغییراتی و ...دارای کاربردهای اساسی می باشد. هدف اصلی ما بیان قضایای نقطه ثا...

15 صفحه اول

قضایای نقطه ثابت برای نگاشت های انقباضی تعمیم یافته در فضاهای gpـ متریک

در این پایان نامه دو قضیه نقطه ثابت را روی نگاشت های تعریف شده در فضاهای gpـ متریک gpـکامل اراپه می دهیم که در خاصیت انقباضی تعمیم یافته توسط توابع نیم پیوسته بالایی معین صدق می کنند.بعلاوه برخی از کاربردهای قضایا را با مثال نشان می دهیم.

قضایای نقطه ی ثابت برای نگاشت های ضعیفا f-انقباضی و قویا f-انبساطی

هدف اصلی این پایان نامه اثبات قضایای نقطه ی ثابت برای نگاشت هایی است که ضعیفا f-انقباضی نامیده می شوند.بعلاوه یک کلاس از نگاشت های قویا f-انبساطی را معرفی کرده و قضایای نقطه ی ثابت را برای این نگاشت ها نیز ثابت می کنیم. سپس در ارتباط با این قضایا مثالهایی ارائه خواهد شد. در ادامه یک قضیه ی وجود و یکتایی را برای انتگرال فردهلم تعمیم یافته ی نوع دوم اثبات می کنیم. در پایان، قضیه ی نقطه ی ثابت مان...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور مرکز - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023